Сложный банковский процент формула – Сложный процент. Формула сложного процента для вклада. Расчет сложных процентов

Формула сложных процентов для расчета ставки по кредиту

Естественным желанием каждого человека является финансовое благосостояние своей семьи. Обязательным условием прибыльности денежной массы является постоянное ее нахождение в обороте. Грамотный подход к инвестированию своих активов может существенно приумножить даже небольшой стартовый капитал. И наоборот, тщательное изучение условий пользования заемными средствами может уберечь от необоснованных расходов. Для ориентировочного подсчета потенциальных затрат применяется формула сложных процентов для расчета ставки по кредиту.

Определение сложного процента

Сложные проценты – это что такое? Таким вопросом часто задаются клиенты банков, не являющиеся специалистами в сфере финансов. Простыми словами сложный процент – это финансовый инструмент расчета процентной ставки, предусматривающий сложение базовой суммы вклада (долга) и прибавление к ней величины начисленных дивидендов в конце расчетного периода. Полученная сумма используется в следующем расчетном периоде как базовая. Сложная процентная ставка по-другому называется двойным процентом.

Длительность расчетного периода устанавливается при подписании кредитного договора. Совокупная величина начисленной переплаты зависит от тех условий, на которых предоставляется займ:

  • годовая ставка дивидендов;
  • срок кредитования;
  • способ начисления дивидендов;
  • способ выплаты полученной за счет начисленных процентов прибыли.

Расчет ставки по кредиту по сложной схеме предполагает увеличение задолженности в прогрессии. Это обусловлено тем, что при нарушении условий кредитования банк начисляет на имеющуюся сумму долга пеню, а при последующих выплатах по кредиту – процентная ставка прибавляется к уже суммированным величинам основного долга и штрафа.

Сложный процент по кредиту может серьезно повлиять на бюджет заемщика

Формула расчета

Сложные схемы капитализации, как правило, используются при оформлении вкладов и кредитов. Для последних они применяются при кратковременном кредитовании, поскольку при начислении дивидендов на займ сроком более года долговое бремя может оказаться неподъемным для заемщика.

Формула начисления сложного процента за один расчетный период выглядит так:

FV = PV + % = PV + PV * % = PV * (1 + %), где:
FV – совокупная величина задолженности;
PV – начальная величина задолженности;
% – процентная ставка за пользование заемными средствами.

Если расчетных периодов кредитования будет два, то применяется другое вычисление:

FV = (PV + %) * (% + 1) = PV * (1 + %) * (1 + %) = PV * (1 + %)2.

При необходимости определить, как посчитать сложные проценты для более продолжительного срока кредитования, состоящего из более чем 2 периодов, рекомендуется воспользоваться следующей формулой:

FV = PV * (1 + %)N = PV * Кн, где:
N – количество расчетных периодов;
Кн – коэффициент наращивания сложной процентной ставки.

Понимание того, как рассчитать величину сложных процентов в процессе кредитования, позволит заранее оценить сумму переплаты по кредиту и, соответственно, свои финансовые возможности в его погашении.

Как показывает практика, при выдаче краткосрочных займов прибыль банка от оказания услуги одинакова при сложных или простых процентах. А вот для заемщика разница может оказаться существенной, особенно при среднесрочном или долгосрочном кредитовании.

Перед оформлением кредита следует объективно оценить свои финансовые возможности

Чего следует опасаться

Вообще, согласно общепринятой мировой практике, оформление кредита под сложные проценты запрещено. Однако некоторые финансовые учреждения применяют скрытую практику их начисления: при допущении просрочки в качестве штрафа заемщику на основную сумму задолженности начисляется процентная ставка по сложной схеме. А затем дальнейшая капитализация кредита происходит уже к суммированной величине долга и процентов.

Обнаружить подобную схему довольно сложно. Для этого требуется тщательно отслеживать все операции по выплате займа. И перед подписанием договора внимательно его вычитать: в пункте о штрафных санкциях заемщика при нарушении условий кредитования не должны указываться никакие двойные проценты.

Что делать, если все-таки банк начислил процент на процент? Прежде всего, обратиться к грамотному юристу. Статьи 809 и 819 Гражданского кодекса РФ определяют, что процентная ставка за пользование займом может начисляться исключительно на основное тело долга. Любые иные манипуляции с ними недопустимы.

Корректно составив апелляционную жалобу, можно оспорить такие действия банка в судебном порядке. При грамотном подходе суд признает этот пункт кредитного договора недействительным, а действия банка неправомерными.

Разумеется, во избежание попадания в неприятные ситуации, следует проконсультироваться с финансовым специалистом еще до момента подписания договора в банке. Это поможет спланировать свой бюджет при учете осуществления регулярных выплат по займу и внимательно изучить все положения договора.

Знание принципов расчета сложных процентов по кредиту поможет оценить свои финансовые возможности и рассчитать величину переплаты по займу. Не рекомендуется допускать просрочки по кредиту, поскольку это может привести к увеличению тела долга до внушительных размеров. Просчитать проценты по своему планируемому кредиту можно в режиме онлайн при помощи сервисов кредитной калькуляции.

Facebook

Twitter

Вконтакте

Google+

denegkom.ru

Формула расчета сложных процентов

Сегодня все чаще люди задумываются о своем финансовом благополучии и о будущем своих детей и внуков. Каким образом можно обезопасить их от возможных материальных невзгод и придать им финансовую стабильность и уверенность в завтрашнем дне?

Такое возможно лишь при осуществлении долгосрочных вложений, которые позволят в течение некоторого запланированного времени превратить небольшой стартовый капитал в нужную сумму посредством применения сложных процентов.

В современных условиях развития экономики сложный процент считается определяющим фактором, дающим инвестору возможность заработать собственный капитал и с легкостью приумножить его. В чем же сложность сложного процента и почему он настолько важен при создании капитала?

Предположим, вы решили вложить деньги в банк или какую-то другую инвестиционную организацию денежную сумму. На этот стартовый капитал по итогам заранее оговоренного периода происходит начисление процентов. В результате размер вашего первоначального капитала увеличивается на сумму начисленных процентов. А это означает, что увеличилась сумма ваших будущих доходов.

Последующий процент за следующий период будет начислен уже не на сумму стартового капитала, который вы вложили в бизнес, а с учетом суммы процентов, прибавленной в прошлом периоде. Работает схема «процент начислен на процент» или, так называемый, сложный процент.

Рассмотрим расчет сложных процентов на конкретном примере. Так, для правильного расчета прибыли выполним ряд элементарных арифметических действий, в основе которых лежат формулы, приведенные ниже.

Сложный процент: Формула 1

Итак, вы приняли решение положить на счет в банке, к примеру, тысячу американских долларов под 15% годовых, с таким расчетом, что через 10 лет ваши дети смогут воспользоваться накопленными сбережениями, которые за это время существенно вырастут в результате капитализации.

Для расчета итоговой суммы применяется особая методика расчета сложного процента, которая подразумевает, что изначальный вклад и начисленная вам прибыль ежегодно складываются, образуя базис для последующего роста прибыли.

Для определения итоговой суммарной прибыли за весь период действия вклада (Σ) используют простую формулу:

Σ=В*(1 + Х/100)Г, где

В – первоначальный вклад,

Г – период оборота капитала, исчисляемый в годах,

Х% – годовая ставка в процентном соотношении.

Подставив конкретные значения в эту формулу, можно рассчитать, что по истечении 5 лет сумма увеличится до 2011,36 долларов, через 10 лет она составит уже 4045,56. Разве это не заманчиво?


Сложный процент: Формула 2

Можно использовать еще один метод начисления и прибавления ставки процента, являющийся наиболее выгодным и удобным для клиента: благодаря учету поквартальных или ежемесячных прибавлений ставки процента, которые в последующем периоде приобретают свойства непосредственно вклада. Такой расчет вклада с применением специальных банковских формул убеждает в том, что целесообразнее руководствоваться им, нежели в первом примере, когда к вкладу прибавляется лишь сумма годовых процентов.

Можно немного усовершенствовать схему расчета месячных выплат, прибавленных к базовой сумме вклада. В этих целях рассчитывают месячную процентную ставку (в случае, если проценты выплачиваются соответственно каждые 30 – 31 календарных дней). Итоговая суммарная прибыль (Σ) рассчитывается по следующей формуле:

Σ=В*(1+Х/100/12)М, где В – это сумма вклада (с суммированием следующих начислений ежемесячной ставки процента),

М – временной отрезок действия вклада в месяцах.

Для чего дополнительно делить процентный показатель на 12? Ответ прост – год включает 12 месяцев, а нам нужно произвести расчет ежемесячной ставки, поскольку в условиях задачи ставка дана годовая. Так, к примеру, если бы возникла необходимость использования такой формулы для расчета поквартальных начислений по вкладу, то следовало бы делить годовой процент на 4, по полугодиям – на 2.

Итак, согласно поставленным условиям, если бы в январе был сделан вклад в 1000 долларов с под 15% годовых, то уже к ноябрю мы бы получили около 1132 долларов.

Используя такую методику, как сложный процент, вы самостоятельно можете определиться с суммой стартового капитала и периодом времени, за который сможете значительно обогатиться. В любом случае, заставьте деньги работать на вас, поскольку от этого зависит исполнение ваших желаний.

P.S. Рекомендую также ознакомиться со статьей “Как рассчитать процентную ставку по вкладу”, чтобы лучше понимать методику расчёта и начисления банковских процентов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста мышкой и нажмите Ctrl+Enter.

Оценка статьи:

( голоса)

data-full-width-responsive=»false»>

myrouble.ru

Сложные проценты на примерах

Задачи на сложные проценты решаются в достаточно быстрый способ при знании нескольких простых формул. Часть из них касается начислений по вкладу или кредиту, когда те осуществляются через определенные промежутки времени . Также сложные проценты используют в задачах химии, медицины и ряде других сфер.

ФОРМУЛЫ СЛОЖНЫХ ПРОЦЕНТОВ

В случае размещения вкладов с капитализацией процентов на годы конечная сумма депозита определяется формулой
Здесь P – первоначальный взнос, r – процентная ставка, n – количество лет. По сложным процентам работают банки, инвестиционные фонды, страховые компании. Распространенные за рубежом, а теперь и в Украине — пенсионные фонды и фонды страхования жизни работают по схеме сложных процентов.
При размещении вкладов с капитализацией процентов ежеквартально формула сложных процентов будет выглядеть
где q – количество полных кварталов.
При капитализации процентов ежемесячно применяют следующую формулу для вычислений
где s – количество месяцев существования соглашения.
Последний случай, непрерывное начисление процентов, когда сложные проценты начисляются ежедневно, рассчитывают по формуле
где m – количество дней.
Страхование жизни и откладывания пенсий исчисляют сложными формулами, кроме начисления сложных процентов ежегодно осуществляются необходимые взносы.
Рассмотрим два случая накопления. Мужчина откладывает 5000 грн. в течение 20 лет. За это время он отложит
20*5000=100000 (грн).
При откладывании в накопительные фонды с годовой ставкой 13%, за первый год сумма возрастет до
5000*(1+13/100)=5650 (грн).
В следующем году человек в данной суммы добавляет еще 5000 грн. В результате, за второй год сумма увеличится
(5650+5000)*(1+0,13)=12034.50 (грн) .
Продолжая подобные вычисления, в конце срока получим сумму размером 457349,58 грн.
Поверьте — ошибок при исчислении форуме, большое значение набегает за счет сложных процентов. Сомнительным остается только история изменения платежеспособности гривны через 20 лет. Учитывая политику государства вкладывать деньги в такие фонды люди не спешат, однако за рубежом практика откладывания денег распространена, правда процентные ставки намного ниже.

Рассмотрим распространенные задачи на сложные проценты.

Пример 1. Вкладчик положил на депозит $ 3000 под 9% годовых на 10 лет. Какая сумма аккумулируется конце 10-го года при годовой капитализации? На сколько вырастет сумма по сравнению с первоначальным взносом?

Решение: Применяем формулу сложных процентов для нахождения суммы в конце срока

Чтобы ответить на второй вопрос, от значения 7102,09 вычитаем сумму вклада.

Разница составляет 4102 доллара.

 

Пример 2. Инвестор вложил 7000 грн под 10% годовых при условии начисления сложных процентов ежеквартально. Какую сумму он получит через 8 лет?

Решение: Применяем 2 формулу сложных процентов. Находим количество кварталов
8*4=32.
и подставляем в формулу

Школьные задачи на сложные проценты

Например, возьмем задачи из учебника для 9 класса авторов А.Г. Мерзляк, В.Б. Полонский, М.С. Якир «Аглгебра». (Номер в скобках)

Задача 1. (556) Костюм стоил 600 грн. После того как цена была снижена дважды, он стал стоить 432 грн., Причем процент снижения второй был в 2 раза больше, чем в первый раз. На сколько процентов каждый раз снижалась цена?

Решение: Для упрощения вычислений обозначим
X – первая скидка;
X/2 – вторая скидка.
Для вычисления неизвестной X составляем уравнение

Упрощаем, и сводим к квадратному уравнению

и решаем


Первый решение не имеет физического смысла, второй учитываем при вычислениях. Значение 0,2 соответствует снижению на 0,2*100%=20% после первой скидки, и X/2 =10% после второй скидки.

 

Задача 2. (557) Определенный товар стоил 200 грн. Сначала его цену повысили на несколько процентов, а затем снизили на столько же процентов, после чего стоимость его стала 192 грн. На сколько процентов каждый раз происходила смена цены товара?

Решение: Поскольку проценты одинаковы, то обозначаем изменении цены товара через X.
На основе условия задачи получим уравнение

Его упрощение приведет к решению уравнения

откуда корни приобретут значений

Первая значение отвергаем, оно меняет суть задачи (сначала имеем снижение, а затем рост процентов, противоречит условию). Второе при пересчете составит 0,2*100%=20% процентов.

 

Задача 3. (558) Вкладчик положил в банк 4000 грн. За первый год ему начислена определенный процент годовых, а второго года банковский процент увеличен на 4%. На конец второго года на счете стало 4664 грн. Сколько процентов составила банковская ставка в первый год?

Решение: Обозначим через X – увеличение вклада в первый год, тогда
X+4/100%=X+0,04
начисления во второй год.
По условию задачи составляем уравнение для определения неизвестной X

После упрощений получим квадратное уравнение вида

Вычисляем дискриминант

и корни уравнения

Первый корень отбрасываем, второй соответствует ставке в 6% годовых.

 

Задача 4. (564) В сосуде 12 кг кислоты. Часть кислоты отлили и долили до прежнего уровня водой. Затем снова отлили столько же, как и в первый раз, и долили водой до прежнего уровня. Сколько литров жидкости отливали каждый раз, если в результате получили 25-процентный раствор кислоты?

Решение: Обозначим через X – часть кислоты, которую отливали.
После первого раза ее осталось 12-X, а процентное содержание кислоты

После второй попытки содержание кислоты в сосуде составило
.
Разведя водой до 12 кг, процентное содержание составляло 25%. Составляем уравнение

Упрощаем проценты и избавляемся знаменателей


Решаем квадратное уравнение


Условии задачи удовлетворяет второе решение, а это значит, что каждый раз отливали 6 кг жидкости.

На этом знакомство со сложными процентами завершается. На практике Вам встретятся как простые так и сложные задачи. При проблемах с вычисления сложных процентов обращайтесь к нам, мы поможем Вам в решении задач.

yukhym.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *